

AIT300-SG High-Precision Current Transducer

AIT300-SG has a high gain and measurement accuracy in the full bandwidth range, due to the application of the multi-point zero-flux technology system and high-frequency ripple sensing channel on top of currently existing DC sensor technology.

The multi-point zero-flux technology system secures the high accuracy by utilizing the technology combination of exciting magnetic flux closed-loop control, self-excited magnetic flux gate and multi-closed-loop control that realizes the closed-loop control between excitation magnetic flux and AC/DC magnetic flux generated by primary current, while the high-frequency ripple sensing channel allows the sensor to have the high performance over the full bandwidth range.

Product photo

Key Technologies

- ♦ Excitation closed-loop control technology
- ♦ Self-excitation demagnetization technology
- ♦ Multi-point zero-flux technology
- ♦ Temperature control compensation technology
- ♦ Multi-range automatic switching technology

Features

- ♦ Insulated measurement between primary and secondary side
- Excellent linearity and accuracy
- ♦ Extremely low temperature drift
- ♦ Extremely low zero drift
- ♦ Broad band and low response time

♦ Rail Transit: EMU, Metro, Trolly car

♦ Ship: Electric driven ship

♦ Car: Electric car

♦ Strong anti-electromagnetic interference

Application Domain

- ♦ Medical Equipment: Scanner, MRI
- \diamond Power industry: Converter, Inverter
- ♦ Renewable Energy: Photovoltaic, Wind energy
- ♦ Testing Instrument: Power analyzer, High-precision power supply
- ♦ Smart Power Grid: Power generation and battery monitoring, Medium low voltage substation
- ♦ Industry Control: Industrial motor drive, UPS, Welding, Robot, Hoist, Elevator, Ski lift

Electrical Performance

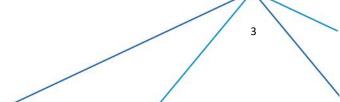
Parameter	Symbol	Measuring Conditions	Min	Тур	Max	Unit
Primary nominal direct current	I _{PN_DC}	_	_	±300	_	Adc
Primary nominal alternating current*	I _{PN}	_	_	212	_	Aac
Primary overload current	I _{PM}	1 Minute	_	_	±360	Adc
Operating Voltage	Vc	_	±14.2	±15	±15.8	V
Power consumption current	I_{PWR}	Rated primary current	±30	±180	±210	mA
Current ratio	K _N	Input : Output	2000:1	2000:1	2000:1	_
Rated output current	Isn	Rated Primary current	_	±0.15	_	Α
Secondary burden resistance	R _M	See Fig. 1	0	10	22	Ω

^{*} refers to AC effective value

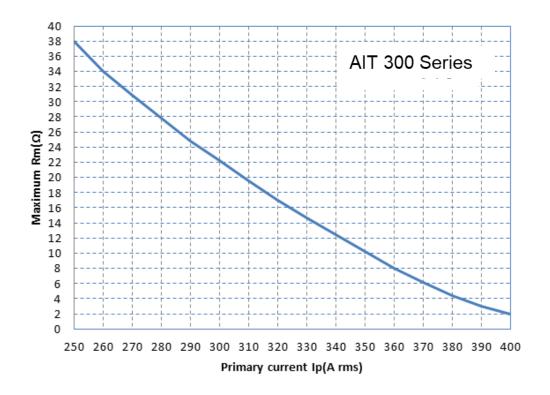
Website: www.hangzhicn.com

Accuracy Measurement

Parameter	Symbol	Measuring Conditions	Min	Тур	Max	Unit
Accuracy	X_{G}	Input direct current, 25±20°C	_	_	10	ppm
Linearity	εL	_	_	_	2	ppm
Temperature stability	T _C	_	_	_	0.1	ppm/K
Time stability	Τ _T	-	_	_	0.2	ppm/month
Power supply interference	Tv	_	_	_	1	ppm/V
Zero offset current	lo	@25°C	_	_	1 (can be adjusted to zero by users)	ppm
Ripple current	I _N	DC-10Hz	_	_	0.5	ppm
Dynamic response time	t _r	di/dt=100A/us, rised to 90%I _{PN}	_	_	1	us
Current change rate	di/dt	_	100	_	_	A/us
Frequency bandwidth (-3dB)	F	-	0	_	500	kHz
Zero offset current	Іот	Full temperature range	_	_	±5	μΑ


Safety Characteristics

Parameter	Symbol	Measuring Conditions	Value	Unit
Insulation voltage / Between primary and secondary sides	Vd	50Hz,1min	5	KV
Transient isolation withstand voltage / Between primary and secondary sides	Vw	50us	10	KV
Creepage distance / Between the primary and the outer shell	dCp	_	11	mm
Clearance distance / Between the primary and the outer shell	dCi	_	11	mm
Comparative tracking index	CTI	IEC-60112	600	V


General Characteristics

Parameter	Symbol	Measuring Conditions	Min	Тур	Max	Unit
Ambient operating temperature	T _A	_	-40	_	+85	°C
Mass	М	_		400±20		g

Tel: +86(0)755-8259 3440

Burden Resistor Instructions

Operating Status Instructions

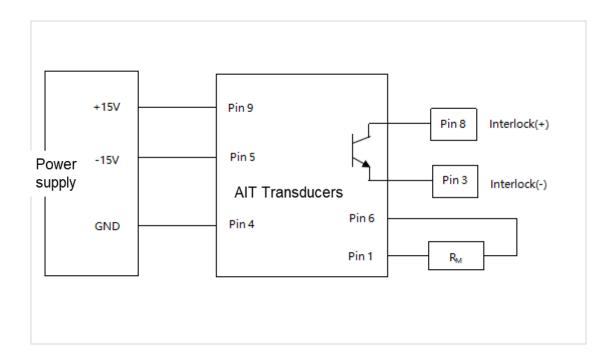
♦ Normal status:

The green indicator is on when the device is running normally:

After the device is powered on, the green indicator is on when the device is running normally, and the 3rd pin and 8th pin of D-Sub9 interface are connected together.

♦ Fault status:

The green light will be off when the transducer is in fault mode.


Trouble-shooting:

- a) When the green light is off, the power supply should be checked as the first step;
- b) If the power supply is normal, then the primary current is over the specified measurement range and the transducers will be in overload mode.
 - In this mode, the transducers will be working in non-zeroflux mode, that the secondary current remains at specified maximum output, the secondary and primary currents are not in proportional and the connection between pin 3 & 8 of the DB9 interface will be off.

Connection system

1. D-Sub9 Connection terminal pin function definition

Pin No.	1	2、7	3	4	5	6	8	9
Definition	I_Output COM	N.C	Interlock(-)	GND	-15V Supply	I_Output	Interlock(+)	+15V Supply

Test instruction:

The primary current I_P can be obtained by measuring the test current I_s flowing through R_M or the voltage U_R across R_M :

$$I_P = K_N * I_S = K_N * (U_R/R_M)$$

2. Interlock Port connection description:

There are two types of Interlock Port connection based on users' actual application shown as Fig A and Fig B:

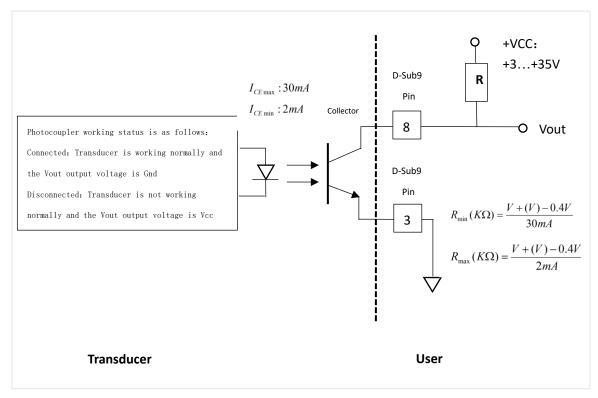


Fig A: Low level output when the transducer is operating normally

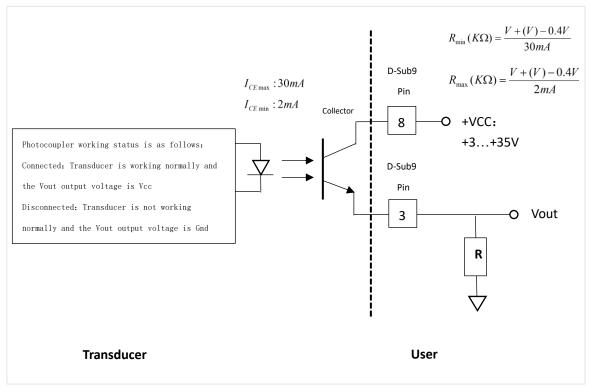
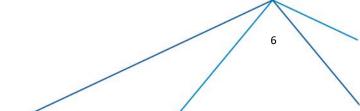
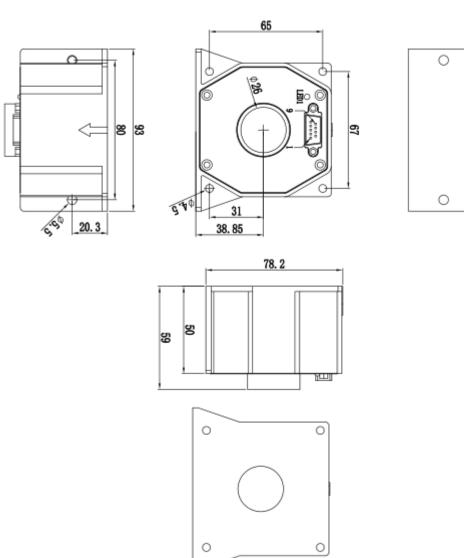



Fig B: High output when the transducer is operating normally



3. The output of the pin Vout in the optocoupler is related to the user-designed circuit, as shown in the following table.

Parameter	Vout	Description
Eig A	<0.2V	The transducer is working normally.
Fig A	Vcc	The transducer is working abnormally, i.e., in overload mode or abnormal power supply
	<0.2V	The transducer is working abnormally, i.e., in overload mode or abnormal power supply
Fig B	Vcc	The transducer is working normally.

Dimensions

